
An Overview of Efficient Computation of  
PageRank 

Madhu Bala, Simple Sharma 
Computer Science & Engineering,Manav Rachna ,International University,Faridabad, India 

  
Abstract— With the rapid growth of the Web, users get easily lost 
in the rich hyper structure. Providing relevant information to the 
users to cater to their needs is the primary goal of website owners. 
Therefore, finding the content of the Web and retrieving the 
users’ interests and needs from their behavior have become 
increasingly important. Web mining is used to categorize users 
and pages by analyzing the users’ behavior, the content of the 
pages, and the order of the URLs that tend to be accessed in 
order. Web structure mining plays an important role in this 
approach. Two page ranking algorithms, HITS and PageRank, 
are commonly used in web structure mining. Both algorithms 
treat all links equally when distributing rank scores. Several 
algorithms have been developed to improve the performance of 
these methods. This paper discusses efficient techniques for 
computing PageRank. How to rank Web resources is critical to 
Web Resource Discovery (Search Engine). This paper points out 
the weakness of current approaches, we discuss several methods 
for analyzing the convergence of PageRank based on the induced 
ordering of the pages 
Keywords- HITS, Web search, web graph, link analysis, PageRank, 
search in context, personalized search, ranking algorithm, Weighted 
PageRank, Adaptive PageRank. 
 

I. INTRODUCTION  
The World Wide Web is rapidly emerging as an important 
medium for the dissemination of information related to a wide 
range of topics [1]. There are about 300 million pages on the 
Web today with about 1 million being added daily. According 
to most predictions, the majority of human information will be 
available on the Web in 10 years. But, it is widely believed that 
99% of the information on the Web is of no interest to 99% of 
the people. Looking for something valuable in this tremendous 
amount of information is as difficult as looking for a needle in 
a haystack. 
Traditional information retrieval techniques can give poor 
results on the Web, with its vast scale and highly variable 
content quality. Recently, however, it was found that Web 
search results can be much improved by using the information 
contained in the link structure between pages. The two best-
known algorithms which do this are HITS [4] and PageRank 
[2]. The latter is used in the highly successful Google search 
engine [3]. The heuristic underlying both of these approaches is 
that pages with many inlinks are more likely to be of high 
quality than pages with few inlinks, given that the author of a 
page will presumably include in it links to pages that s/he 
believes are of high quality. Given a query (set of words or 
other query terms), HITS invokes a traditional search engine to 
obtain a set of pages relevant to it, expands this set with its 
inlinks and outlinks, and then attempts to find two types of 
pages, hubs (pages that point to many pages of high quality) and 
authorities (pages of high quality). Because this computation is 

carried out at query time, it is not feasible for today’s search 
engines, which need to handle tens of millions of queries per 
day. In contrast, PageRank computes a single measure of 
quality for a page at crawl time. This measure is then combined 
with a traditional information retrieval score at query time. 
Compared with HITS, this has the advantage of much greater 
efficiency, but the disadvantage that the PageRank score of a 
page ignores whether or not the page is relevant to the query at 
hand. 
The PageRank algorithm for determining the “importance” of 
Web pages has become a central technique in Web search [5]. 
The core of the PageRank algorithm involves computing the 
principal eigenvector of the Markov matrix representing the 
hyperlink structure of the Web. As the Web graph is very large, 
containing over a billion nodes, the PageRank vector is 
generally computed offline, during the preprocessing of the 
Web crawl, before any queries have been issued. The 
development of techniques for computing PageRank efficiently 
for Web-scale graphs is important for a number of reasons. 
 For Web graphs containing a billion nodes, computing a 
PageRank vector can take several days. Computing PageRank 
quickly is necessary to reduce the lag time from when a new 
crawl is completed to when that crawl can be made available 
for searching. Furthermore, recent approaches to personalized 
and topic-sensitive Page- Rank schemes [6, 7, 8] require 
computing many PageRank vectors, each biased towards 
certain types of pages. These approaches intensify the need for 
faster methods for computing PageRank. 
This paper is structured as follows: in section II, we have 
discussed the background of algorithms for computing 
PageRank. In section III, IV and V PageRank, Adaptive, 
Weighted algorithms have been discussed.  Amongst other 
things, we will investigate whether weighted and adaptive 
algorithm perform better than PageRank algorithm. Noise 
reduction is an important issue in image processing. Several 
algorithms for computing PageRank have already been 
developed; cfr.[1] and [2] for an extensive overview. 

 
II. BACKGROUND 

 
With the rapid growth of the Web, providing relevant pages of 
the highest quality to the users based on their queries becomes 
increasingly difficult. The reasons are that some web pages are 
not self-descriptive and that some links exist purely for 
navigational purposes. Therefore, finding appropriate pages 
through a search engine that relies on web contents or makes 
use of hyperlink information is very difficult. To address the 
problems mentioned above, several algorithms have been 

Madhu Balai et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (4) , 2011, 1639-1643

1639



proposed. Among them are PageRank [4] and Hypertext 
Induced Topic Selection (HITS) [2, 9] algorithms.  
PageRank is a commonly used algorithm in Web Structure 
Mining. It measures the importance of the pages by analyzing 
the links [1, 8]. PageRank has been developed by Google and 
is named after Larry Page, Google’s co-founder and 
president[4]. PageRank ranks pages based on the web 
structure. Google first retrieves a list of relevant pages to a 
given query based on factors such as title tags and keywords. 
Then it uses PageRank to adjust the results so that more 
“important” pages are provided at the top of the page list [4].  
The Pagerank algorithm is described in detail in the next 
section. HITS ranks webpages by analyzing their inlinks and 
outlinks. In this algorithm, webpages pointed to by many 
hyperlinks are called authorities whereas webpages that point 
to many hyperlinks are called hubs [9, 10, 6]. Authorities and 
hubs are illustrated in Figure 1. 
 

 
 

Figure 1. Hubs and authorities[2] 
 
Hubs and authorities are assigned respective scores. Scores are 
computed in a mutually reinforcing way: an authority pointed 
to by several highly scored hubs should be a strong authority 
while a hub that points to several highly scored authorities 
should be a popular hub [9, 10]. Let ap and hp represent the 
authority and hub scores of page p, respectively. B(p) and I(p) 
denote the set of referrer and reference pages of page p, 
respectively. The scores of hubs and authorities are calculated 
as follows [2, 9, 10]: 

 
 

 

Figure 2 shows an example of the calculation of authority and 
hub scores. 

 
 

Figure 2. An example of HITS operations 
 
HITS is a purely link-based algorithm. It is used to rank pages 
that are retrieved from the Web, based on their textual contents 
to a given query. Once these pages have been assembled, the 
HITS algorithm ignores textual content and focuses itself on 
the structure of the Web only. Some difficulties arise from this 
feature [2]: 
• HITS frequently returns more general webpages on an 
otherwise narrowly focused topic because the web does not 
contain many resources for the topic, 
• Topic drift occurs while the hub has multiple topics because 
all of the outlinks of a hub page get equivalent weights, and 
• Some popular sites that are not highly relevant to the given 
query gain overhead weight values. 
The CLEVER algorithm is an extension of standard HITS and 
provides an appropriate solution to the problems that result 
from standard HITS [2]. CLEVER assigns a weight to each 
link based on the terms of the queries and end-points of the 
link. It combines anchor text to set weights to the links as well. 
Moreover, it breaks large hub pages into smaller units so that 
each hub page is focused on as a single topic. Finally, in the 
case of a large number of pages from a single domain, 
it scales down the weights of pages to reduce the probabilities 
of overhead weights [2]. Another major shortcoming of 
standard HITS is that it assumes that all links pointing to a 
page are of equal weight and fails to recognize that some links 
might be more important than others. A Probabilistic analogue 
of the HITS Algorithm(PHITS) has been developed to solve 
this problem[3]. PHITS provides a probabilistic interpretation 
of term-document relationships and identifies authoritative 
documents. In the experiment on a set of hyperlinked 
documents, PHITS demonstrates better results compared to 
those obtained by standard HITS. The most important feature 
of the PHITS algorithm is its ability to estimate the actual 
probabilities of authorities compared to the scalar magnitudes 
of authority that are provided by standard HITS[3]. 
 
III. Review of PageRank Algorithm  
 
The First let us review the motivation behind PageRank [10]. 
The essential idea is that if page u has a link to page v, then the 

Madhu Balai et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (4) , 2011, 1639-1643

1640



author of u is implicitly conferring some importance to page v. 
How much importance does u confer? Let Nu be the outdegree 
of page u, and let Rank(p) represent the importance (i.e., 
PageRank) of page p. Then the link (u, v) confers Rank(u)/Nu 
units of rank to v. This simple idea leads to the following 
fixpoint computation that yields the rank vector Rank* over all 
of the pages on the web. If N is the number of pages, assign all 
pages the initial value 1/N. Let Bv represent the set of pages 
pointing to v. In each iteration, propagate the ranks as follows:1 

u 

We continue the iterations until Rank stabilizes to within some 
threshold. The final vector Rank* contains the PageRank 
vector over the web. This vector is computed only once after 
each crawl of the web; the values can then be used to influence 
the ranking of search results [2]. 
The process can also be expressed as the following eigenvector 
calculation, pro- viding useful insight into PageRank. Let M be 
the square, stochastic matrix corresponding to the directed 
graph G of the web, assuming all nodes in G have at least one 
outgoing edge. If there is a link from page j to page i, then let 
the matrix entry mij have the value 1/Nj . Let all other entries 
have the value 0. One iteration of the previous fix point 
computation corresponds to the matrix-vector multiplication M 
× Rank. Repeatedly multiplying Rank by M yields the 
dominant eigenvector Rank* of the matrix M. Because M 
corresponds to the stochastic transition matrix over the graph 
G, PageRank can be viewed as the stationary probability 
distribution over pages induced by a random walk on the web.  
We can measure the convergence of the iterations using the 
Residual vector. Because M is stochastic (i.e., the entries in 
each column sum to 1), the dominant eigenvalue of M is 1. 
Thus the PageRank vector Rank*, the dominant eigenvector of 
M, has eigenvalue 1, leading to the equality M × Rank* = 
Rank*. We can use the deviation from this equality for some 
other vector as an error estimate. For some intermediate vector 
Ranki, let Residuali = M×Ranki−Ranki. Equivalently, because 
multiplication by M is an iteration step, we have Residuali = 
Ranki+1 −Ranki. We can treat ||Residuali|| as an indicator for 
how well Ranki approximates Rank*. We expect ||Residuali|| to 
tend to zero after an adequate number of iterations.  
We now address several issues regarding the computation. We 
previously made the assumption that each node in G has at 
least one outgoing edge. To enforce this assumption, we can 
iteratively remove nodes in G that have outdegree 0. 
Alternatively, we can conceptually add a complete set of 
outgoing edges to any node with outdegree 0. Another caveat is 
that the convergence of PageRank is guaranteed only if M is 
irreducible (i.e., G is strongly connected) and aperiodic [12]. 
The latter is guaranteed in practice for the web, while the 
former is true if we add a dampening factor to the rank 
propagation. We can define a new matrix M′ in which we add 

transition edges of probability  between every pair of 

nodes in G: 

M′ = cM + (1 − c) × [1 /N]N×N 

This modification improves the quality of PageRank by 
introducing a decay factor which limits the effect of rank sinks 
[4], in addition to guaranteeing convergence to a unique rank 
vector. For the above modification to M, an iteration of 
PageRank can be expressed as follows:2 
M′ × Rank = cM × Rank + (1 − c) × [1/N]N×1 

We can bias PageRank to weight certain categories of pages by 
replacing the uniform vector [ 1 N ]N×1 with the nonuniform 
N ×1 personalization vector ~p as discussed in [4]. In terms of 
the random-walk model of PageRank, the personalization 
vector represents the addition of a complete set of transition 
edges where the probability of edge (u, v) is given by (1 − c) × 
pv. Although the matrix M′ that results from the modifications 
discussed above is not sparse, we never need to store it 
explicitly. We need only the ability to evaluate M′ × Rank 
efficiently. 
 

function  pageRank(A,x(0),v) { 
repeat 
x(k+1)=Ax(k); 

-xk ||1; 
until δ<Є; 
return x(k+1); 
} 

Algorithm 2: PageRank 
 
 

 
Figure 3. An example of simplified version of PageRank[5] 
 

IV. Adaptive Method for the Computation of PageRank 
 

We observe that the convergence patterns of pages in the 
PageRank algorithm have a nonuniform distribution. 
Specifically, many pages converge to their true PageRank 
quickly, while relatively few pages take a much longer time to 
converge. Furthermore, we observe that these slow-converging 
pages are generally those pages with high PageRank.We use 
this observation to devise a simple algorithm to speed up the 

Madhu Balai et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (4) , 2011, 1639-1643

1641



computation of PageRank, in which the PageRank of pages 
that have converged are not recomputed at each iteration after 
convergence. This algorithm, which we call Adaptive 
PageRank[11], speeds up the computation of PageRank by 
nearly 30%. 
In particular, we do not need to recompute the Page- Ranks of 
the pages that have already converged, and we do not need to 
recompute the contribution of PageRank from pages that have 
converged to other pages.We discuss in this section how each 
of these redundancies can be eliminated. 
A. Algorithm Intuition 
We begin by describing the intuition behind the Adaptive 
PageRank algorithm. We consider next a single iteration of the 
Power Method, and show how we can reduce the cost.  
Consider that we have completed k iterations of the 
powermethod. Using the iterate x(k) , we now wish to generate 
the iterate x(k+1) . Let C be set of pages that have converged to a 
given tolerance, and N be the set of pages that have not yet 
converged, 
 We can split the matrix A defined in Section 2 into two 
submatrices. Let AN be the m×n submatrix corresponding to 
the inlinks of those m pages whose PageRanks have not yet 
converged, and AC be the (n − m) × n submatrix corresponding 
to the inlinks of those pages that have already converged. 
Let us likewise split the current iterate of the PageRank vector 
x(k) into the m- vector corresponding to the components of x(k) 
that have not yet converged, and the (m − n)-vector 
corresponding to the components of x(k) that have not yet 
converged that have already converged. We may order A and 
x(k) as follows: 
 
 

x(k)=    (3) 

 
 

A=              (4) 

 
 

=      ·  

 
 

However, since the elements of have already converged, we do 
not need to recompute. Therefore, we may simplify each 
iteration of the computation to be: 

 
 
 

 
 
 

The basic Adaptive PageRank algorithm is given in  
Algorithm 3 

function adaptivePR(A, x(0) , v) { 
repeat 
 
  xN 

(k+1)   = ANx(k); 

; 
[N,C] = detectConverged(x(k) , x(k+1),

Є); 

periodically, δ = ||Ax(k) − xk||1; 
until δ <Є; 
return x(k+1); 
} 
 

Algorithm 3: Adaptive PageRank[11] 
Identifying pages in each iteration that have converged is 
inexpensive. However, reordering the matrix A at each 
iteration is expensive. Therefore, we exploit the idea given 
above by periodically identifying converged pages and 
constructing AN without explicitly reordering identifiers. Since 
AN is smaller than A, the iteration cost for future iterations is 
reduced. 
 
IV. Weighted PageRank Algorithm 
The Weighted PageRank algorithm (WPR)[12], an extension to 
the standard PageRank algorithm. WPR takes into account the 
importance of both the inlinks and the outlinks of the pages and 
distributes rank scores based on the popularity of the pages. 
The results of our simulation studies show that WPR performs 
better than the conventional PageRank algorithm in terms of 
returning larger number of relevant pages to a given query. The 
more popular webpages are, the more linkages that other 
webpages tend to have to them or are linked to by them. The 
proposed extended PageRank algorithm–a Weighted PageRank 
Algorithm–assigns larger rank values to more important 
(popular) pages instead of dividing the rank value of a page 
evenly among its outlink pages. Each outlink page gets a value 
proportional to its popularity (its number of inlinks and 
outlinks). The popularity from the number of inlinks and 
outlinks is recorded as and  respectively is the weight of link(v, 
u) calculated based on the number of inlinks of page u and the 
number of inlinks of  all  reference pages. 

  
where Iu and Ip represent the number of inlinks of page u and 
page p, respectively. R(v) denotes the reference page list of 
page v is the weight of link(v, u) calculated based on the 
number of outlinks of page u and the number of outlinks of all 
reference pages of page v. 

 
where Ou and Op represent the number of outlinks of page u 
and page p, respectively. R(v) denotes the reference page list of 
page v. 

Madhu Balai et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (4) , 2011, 1639-1643

1642



Figure 4 shows an example of some links of a hypothetical 
website.  

 
Figure 4. Links of a website[12] 

 
In this example, Page A has two reference pages: p1 and p2. 
The inlinks and outlinks of these two pages are Ip1 = 2, 
Ip2 = 1, Op1 = 2, and Op2 = 3. Therefore, 

 

 = Ip1/(Ip1 + Ip2) = 2/3 

and 

 

= Op1/(Op1 + Op2) = 2/5 

 

 
Figure 5. Architectural components of the system used to 

implement and evaluate the WPR algorithm[12] 
 

 

REFERENCES 
[1]. P. Bernstein, M. Brodie, S. Ceri, et al., The Asilomar Report on Database 

Research, Technical Report MSTR-TR- 98-57, Microsoft Research, 
Microsoft Corporation, September 1998. 

[2]. The Google Search Engine: Commercial search engine founded by the 
originators of PageRank. Located at http://www.google.com/. 

[3]. S. Brin and L. Page (1998). The anatomy of a large-scale hypertextual 
Web search engine. Proceedings of the Seventh International World Wide 
Web Conference. 

[4]. J. M. Kleinberg (1998). Authoritative sources in a hyperlinked 
environment. Proceedings of the Ninth Annual ACM-SIAM Symposium 
on Discrete Algorithms. 

[5]. L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank citation 
ranking: Bringing order to the web. Stanford Digital Libraries Working 
Paper, 1998. 

[6]. T. H. Haveliwala. Topic-sensitive PageRank. In Proceedings of the 
Eleventh International World Wide Web Conference, 2002. 

[7]. M. Richardson and P. Domingos. The Intelligent Surfer: Probabilistic 
Combination of Link and Content Information in PageRank, volume 14. 
MIT Press, Cambridge, MA, 2002. 

[8]. G. Jeh and J. Widom. Scaling personalized web search. Stanford 
University Technical Report, 2002. 

[9]. G. Salton and M. J. McGill (1983). Introduction to Modern Information 
Retrieval. McGraw-Hill, New York, NY. 

[10]. S. Brin and L. Page. The anatomy of a large-scale hypertextual web 
search engine. In Proceedings of the Seventh International World Wide 
Web Conference, 1998. 

[11]. Sepandar Kamvar, Taher Haveliwala, and Gene Golub. Adaptive 
Methods for the Computation of PageRank. Stanford University 
Technical Report,1999. 

[12]. Wenpu Xing and Ali Ghorbani Weighted PageRank Algorithm 
,University of New Brunswick 

[13]. S. Pal, V. Talwar, and P. Mitra. Web mining in soft computing 
framework : Relevance, state of the art and future directions. IEEE Trans. 
Neural Networks, 13(5):1163–1177, 2002. 

Madhu Balai et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (4) , 2011, 1639-1643

1643




